

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

INDEX

<u>S.NO.</u>	<u>CONTENTS</u>	Page No.
1	Focal Points	02
2	Teaching Methodology	03
3	Syllabus as per MDU	04
4	Lesson Plan	05
5	Text Books and references	08
6	Assignments	09
7	Monthly Report	Front
8	Attendance Sheet	Front
9	Previous Year Question Paper	

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

FOCAL POINTS

- **1.** The main objective in the very beginning classes of this subject is to provide basis knowledge regarding this subject.
- 2. After that we will move to our university syllabus. We will start

from section one.

- **3.** Laboratory Experiments will be conducted regularly (one lab per week).
- **4.** Group discussion will be organized to remove hesitation of students.
- 5. Website links will be provided to student for getting recently developed

fundamentals related to subject.

- **6.** Regular class tests will be conducted to check the performance of students.
- **7.** We will finish the entire syllabus within designed time duration, so that we may get time for revision work.
- 8. All the sections of syllabus will be given equal and maximum
- **9.** Class room as well as power point presentations will be taken from students regularly.
- **10.** Student Doubts will be cleared by managing some extra classes.
- **11.** Stress will be given on practical and field knowledge , which will be the master success key for student.

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

TEACHING METHODOLOGY

COURSE OBJECTIVE

A complete study about all the properties of soil and every law involved in it , is called soil mechanics. The main objective of this subject is to provide knowledge about formation of soil , its properties and ho it bears load , which is applied directly on soil surface.

METHODOLOGY

The Procedure will be lectures, presentations, Tutorials, Tests, assignments of class work and Practicle Labs.

ACHIEVEMENT

At the end of semester, students will have a detailed knowledge of Soil , its basic properties and different forces acting on the soil.

EVALUATION

Besides the semester end – examination, the students will be continuously assessed during the course on the following basis

- i. Mid Term Examinations 30 Marks
- ii. Internal Assessment 20 Marks (Assignments +Attendance)

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

SYLLABUS AS PER MDU

SECTION-A

Unit- I Introduction to structural analysis, Definition of determinate and indeterminate structure, degree of freedom, concept of stress and strains, Mohr' circle of stress and strain, principle stress and strain examples. Stress- strain relationship hook's law, examples, composite sections

SECTION-B

Unit –**II** Concept of bending stresses, flexural formula, stress- strain diagram for beam, shear stress in beam, shear stresses in beam with different crosssection. Concept of torsion, torsion in circular shaft, torsion equation, shear stress in shaft due to torsion examples

SECTION-C

Unit- III Theory of column, slenderness ratio, end connections, short column, Euler's critical buckling load, eccentric loaded short column, cylinder column subjected to eccentric loading, examples

SECTION-D

Unit- IV Introduction to bending moment and shear force diagram in beam introduction to slope and deflection in beam by differential equation, moment- area method and conjugate beam method, principle of virtual work, Maxwell law of reciprocal deflection, Willot-Mohr diagram

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

Name of the Faculty	:	Mr Vaibhav Chawla
Discipline	:	Civil Engineering
Semester	:	3 rd
Subject	:	Structural Analysis-I, CE-201-F
Lesson Plan Duration	:	15 Weeks (From August 2018 to November 30)

:

Work load (Lectures/Practical)

Per week (in hours)

Lectures-04, Practicals-02

WEEK		THEORY		RACTICAL
	LECTURE	TOPIC (including assignment /test)	PRACTICAL	TOPIC
	DAY		DAY	
1 ST	1 st	Introduction to structural Analysis,	1 st	A practical
		Definition of Structure		knowledge for
	2 nd	Definition of determinate and		beam and
		indeterminate structures, Degree		columns or visual
		of freedom		classification of
	3 rd	Stress and Strain concept		columns and
	4 th	Mohr's circle of stress and strain		beams
2 ND	5 th	Principal stress and principal strain	2 nd	Concept of
	6 th	Stress strain relationship and		Bending of beams
		hook's law, Composite section		visually in LAB
	7 th	Numerical problems on this unit		
	8 th	TEST OF THIS UNIT (SECTION-A)		
3 rd	9 th	Two days classes on projects given	3 rd	Verification of
	10 th	to students		reciprocal
	11 th	Introduction to the bending stress		theorem of
		and its concept		deflection using a
	12 th	Determination of flexural formula		simply supported
46	46		*	beam
4 th	13 th	Stress strain diagrams	4 th	Verification of
	14 th	Diagrams for beams and columns		moment area
	15 th	Concept of torsion		theorem for
	16 th	Torsion in circular shaft		slopes
5 th	17 th	Torsion equation	5 th	Verification of
	18 th	Shear stress in shaft due to torsion		moment area

Session: 2018-2019

Department: CIVIL engineering

Course: B.Tech Semester: 3rd Faculty name: Vaibhay <u>Chawla</u>

Subject: Stru	ctural Analy	cuity name: v	albhav Chawla	
	19 th	Numerical problems on this unit		theorem for
	20 th	TEST OF THIS UNIT (SECTION-B)		deflection of the
				beam
6 th	21st	Two days classes on projects given	6 th	
	22 nd	to students		
	23 rd	Introduction to the columns and		
		theory of columns, slenderness		Deflections of a
		ratio		truss- horizontal
	24 th	End conditions of the columns.		deflections of
		Short columns		various joints of
7 th	25 th	Euler's critical buckling load	7 th	pin jointed truss
	26 th			
	27 th	Eccentric loaded short columns		
	28 th			
8 th	29 th	Cylinder column subject to	8 th	Deflections of a
	30 th	eccentric loading		truss- vertical
	31 st	Numerical problem on this unit		deflections of
	32 nd			various joints of
	-			pin jointed truss
9 th	33 ^{ra}	TEST OF THIS UNIT (SECTION-C)	9 th	Elastic
	34 th	Two days classes on projects given		displacement
	35 th	to the students		(vertical &
	36 th	Introduction to bending moment		horizontal of
		and shear force		curved members)
10 th	37 th	Bending moment And shear force	10 th	Experimental and
		diagrams		analytical study of
	38 th	Numerical of shear force and		3 hinged arch and
		bending moment diagram		influence line for
	39th	Slope in beam by differential		horizontal thrust
		equations		
	40 th	Deflection in beam by differential		
		equations		
11 th	41 st	Numerical on Slope and deflection	11 th	Experimental and
	42 nd	in beam by differential equation		analytical study of
	43 rd	Moment-Area method		behaviour of
	44 th			struts with various
	-1.			end conditions
12 th	45 th	Numerical on Moment area	12 th	To determine
		method		elastic properties
	46 th	Conjugate beam method,		of a beam

Session: 2018-2019 Department: CIVIL engineering Course: B.Tech Semester: 3rd Faculty name: Vaibhay Chawla

Subject: Structural Analysis-I, CE-201-F		aculty name: Vaibhav Chawla		
	47 th	Numerical on conjugate beam		
		method		
	48 th	Principle of virtual work		
13 th	49 th	Maxwell law of reciprocal	13 th	
	50 th	deflection		Uniaxial tension
	51 st	Numerical of Maxwell law, Willot-	-	test for steel
	52 nd	Mohr Diagram		(plain &
14 th	53 rd		14 th	deformed bars)
	54 th	Numerical on this unit	-	
	55 th	TEST OF THIS UNIT (SECTION-D)	-	
	56 th	ONE DAY WILL BE GIVEN TO THE	-	
		PROJECTS OF STUDENTS		
15 th			15 th	
		PRE-UNIVERSITY		PRE-UNIVERSITY
		EXAMINATION		EXAMINATION

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

TEXT BOOKS AND REFERENCES:

1. Strength of Materials Part-I, S.Timoshenko, Affiliated East-West

Press,N.Delhi

2. Mechanics of Materials, Popov Nagarjan & Lu, Prentice Hall of

India, N. Delhi

3. Mechanics of Solids, Prasad, V.S. Gakgotia Pub., N.Delhi. Session – 2017-2018 Semesters: Third 5

4. Elementary Structural Analysis, Jain, A.K., Nem Chand & Bros, Roorkee. 5. Elementary Struictural Analysis, Wibur & Nooris, McGraw Hill Book Co., Newyork.

6. Structural Analysis, Bhavikatti, S.S., Vikas Pub. House, N.Delhi.

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

ASSIGNMENTS

Assignment – 1

- Q1 What do you meant by structural analysis. Explain briefly.
- Q2 Define determinate and indeterminate structure
- Q3 Draw and explain stress and strain curve.
- Q4 Draw the simple stress and strain curve for some common materials.
- Q5 Explain the following:
- -Yield stress
- Repture stress
- Q6 Explain hooks law and principle of superposition.
- Q7 What do you understand by degree of static inderminacy ?

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Assignment – 2 Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

Q1Derive deflection for uniformly tapered circular bar.

- Q2 Derive elongation under its self weight.
- Q3 State principle for stress distribution .
- Q4 Derive a torsion equation for a circular shaft.
- Q5 what do you understand by degree of kinematic indeterminacy.
- Q6 Draw stress-strain digram for mild steel and explain Hook' law.
- Q7 Explain prediction of load.

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Assignment – 3 Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

Q1: Compute strain energy using load deflection diagram.

Q2: Compute strain energy for free hanging prismatic bar with an axial load.

Q3: Write assumptions of eular's theory.

Q4: Write limitations of eular's theory

Q5 Define the shear force, bending moment and point of conteraflexure.

Q6 Define the conjugate beam theorems.

Q7 Define the principle of virtual work.

Assignment – 4

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

Q1-Determine the diameter of a solid shaft which will transmit 300kn at 250rpm the maximum shear stress should not exceed 30n/mm2 and twist should not be more than 10 in a shaft length 2m. take G=1x105 N/MM2?

Q2-the stiffness of a closed coil helical spring at mean diameter 20cm is made of 3cm dia rod and has 16 turns. A wt of 3 KN is droped on the spring find the height by which the wt. should be dropped before striking the spring so that the spring may be compressed by 18 cm, Take C = 8x104 N/MM2?

Q3- what do you mean by strength of a shaft?

Q4-Define torsional rigidity of the solid circular shaft.

Q5-distinguish between closed coil helical spring and open coil helical spring,

Q6-what is meant by composite shaft.

Q7-what is called twisting moment.

Assignment – 5

Session: 2018-2019 Department: CIVIL engineering Subject: Structural Analysis-I, CE-201-F Course: B.Tech Semester: 3rd Faculty name: Vaibhav Chawla

Q1-A rod of 150cm long and diameter 2 cm is subjected to an axial pull of 20kn. If the modulus of elasticity of the material of the rod is 2x105 N/MM2. Determine 1.stress 2. Strain 3. The elongation of the rod.

Q2-The extension in a rectangular steel bar of length 400mm and thickness 10mm is found to 0.21mm.the bar tapers uniformly in width from 100mm to 50mm. if E for the bar is 2x105N/M2. Determine The axial load on the bar A. stress B strain C elongation of the rod.

Q3- A rod of 250cm long and diameter 3 cm is subjected to an axial pull of 30kn. If the modulus of elasticity of the material of the rod is 2x105 N/MM2. Determine 1.stress 2. Strain 3. The elongation of the rod.

Q4 –find the youngs modulus of a rod of diameter 30mm and of length 300mm which is subjected to a tensile load of 60kn and the extension of the rod is 0.4mm.

Q5- the extension in a rectangular steel bar of length 400mm and thickness 3mm is found to be 0.21mm the bar tapers uniformly in width from 20mm to 60mm E for the bar is 2x105 N/MM2. determine the axial load on the bar.

Q6- The ultimate stress for a hollow steel column which carries an axial load of 2 MN is 500 N/MM2.if the external diameter of the column is 250mm,determine the internal diameter take FOS 4.0.